September 2000 .

ommunication

* EE S
L 3
For OEM Design Engineers and Managers :‘ :

THE COMETS

Up-and-Coming
Comm Companies ;;
Step into the Spotlight. |

VOICE GATEWAY Q
DESIGN

Linking Packet and
Telephony Network
Architectures.

FIBER-OPTIC
TEST

Digging into Optical
Measurement Issues.

PLUS:

Special Section on
CompactPCI Design.

www.csdmag.com

Volume 6, Number 9

ILLUSTRATION BY JANE HAMBLETON

COLUMNS

21 Building Blocks
Broadband Law.

96 Standards &
Protocols
Speeding Up Wireless Standards
Development.

P i
124 2'bésign -
Mobile IP.

DEPARTMENTS

7 uplink
Look! Up in the Sky!

9 Upfront

Information from the communication
front.

13 Technical News
Alliances, agreements, and technology
announcements.

17 Top Ten

Reusing IP Blocks.

Product
103 spotiights

The best of the best.

110 New Products

The latest in ICs, components,
subsystems, test and measurement,
design tools, and software and
intellectual property.

905-2499, Domestic subscription.rate for one year, $50.00, two v
ayment in L.

for $7.00 plus £,

FEATURES

28 The 2000 Comet Awards

By Jokn Poultney

Get ready to meet the top 20 up-and-coming commu-
nication companies. In a market as exciting as com-
munications, these 20 companies are primed for a
brilliant future.

38 Designing a Next-Generation
Voice Gateway

By Yogendra Jain

With the explosion in voice-capable IP telephony tech-
nology, designers need to understand a common compo-
nent in internetworking deployments: the voice gateway.

47 Gaining Control of CDMA
Power

By Stuart McGarrity

Power control has become a huge headache for
CDMA mobile phone developers. Through the use
of system-level design tools, engineers can develop
algorithms that solve power control concerns.

55 Fiber-Optic Test Instruments:
a Buyer’s Guide

By Janine Sullivan

"Today’s complex fiber-optic systems require increasing-
ly complex testing systems. Instrumentation vendors
are working hard to enable designers to design these
complex systems as efficiently as possible.

68 Navigating through FPGA
Designs

By Kurt Aronow

Engineers need to be familiar with some basic issues
including writing specifications, place-and-route tools,
and global clocks in order to navigate their way through
FPGA design.

77'94 Special Section:

Embedded Development

Commupicatio
design

Postal and Rates: Communication Systems Design (155N 1086-4644, USPS 013-751) is published monthly by CMP, 600 Harrison Street. San Francisco, CA 94107-1391, te |1|'Imnt (415) 905-2200, fax (415)
5 JSII rates for one vear are $57.00, $94.00 for two years, payable in 118, funds, For all ather countries, the rte for one year is

fon inquirics, please write to us in care of Conmumication Systems Desigr, PO, Box 3405, Omeda Communications,

2 0 postaze: intemational $10.00 with postage included. Major credit cards accepred. All

1
1
1
1
1
L}
1
1
]
1
1
1
1
L}
]
(]
1
]
L}
(]
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
]
]
]
1
]
1
1
1
1
1
1
1
1
(]
1
1
i
1
1
1
]
1
1
]
1
L]
1
1
1
1
1
1
1
(]
L}
(]
1
(]
i
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
]
1
]
]
1
1
1
1
1
1
1
L}
(]
1
]
1
1
1
1
1
1
1
1
1
1
]
1
1
]
1
1

The FPGA design process is not as seamless as one
might like. However, powerful synthesis, simulation,
and programming tools are here to help.

By Kurt Aronow

ealing with various
FPGA design chal-
lenges is a little like
climbing one of the
famous routes on
Hallet’s Peak in Rocky Mountain
National Park. A short time ago, a
large block fell off the mountain
(without any climbers on it) remov-
ing a significant part of one of the
most popular routes. The route,
which was never easy to follow,
NOW presents new tests.

Similarly, an engineer trying to
“climb” an already intricate FPGA
design route today will inevitably
face a new set of challenges. For
instance, the software tools to de-
sign, compile, and simulate FPGAs
have become much more powerful
while the design requirements have
become significantly more complex.

However, any difficult climbing
or designing is not nearly as intimi-
dating when you have some of the
“beta” on the route. This article
explores some considerations engi-
neers may confront when developing
different FPGA routes. To do this,
we will explore tools, clocking, pro-

68 COMMUNICATION SYSTEMS DESIGN

gramming language, synthesis, and
simulation issues.

FPGAs are a type of program-
mable logic device (PL.D) contain-
ing thousands of flip-flops and logic
gates. By replacing discrete logic
that would otherwise occupy hun-
dreds of times more board space,
FPGAs have increasingly become a
common feature in telecommunica-
tion hardware designs.

Early languages

Early languages such as DatalO’s
ABEL and Altera’s AHDL were
once the tools of choice for FPGA
hardware design. Both of these are
well-suited for designs thart are
close to the hardware. However,
writing code that is close to the
primitives in the hardware is not
necessarily the clearest way to write
code. Also, neither language sup-
ports test benches for testing the
code.

Two other languages, very-
high-definition language (VHDL)
and Verilog, have emerged to
address these issues. VHDL came
before Verilog and is a more highly
typed and verbose language. Wri-
ting in Verilog is similar to writing

in C, while VHDL more closely
resembles Pascal. One feature
available in VHDL and not Veri-
log is the ability to set up three-
dimensional (3D) memory spaces.
However, clear, concise code can
be written with either language,
and both are widely used.

Just as in writing software for
embedded applications, a coding
standard is important when more
than one person will ever have to
use the source code. The big danger
is that when the person who wrote
the original code leaves or moves on
to another project, no one will under-
stand how it works if the code ever
has to change. Even the original
designer is likely to forget it in sever-
al months.

One can easily write individual
lines of understandable HDL code
that collectively become extremely
difficult to follow. A good coding
standard will help alleviate this by
providing guidelines for hierarchical
structures and component instantia-
tions. For instance, many books use
various types of flip-flops as exam-
ples to model component instantia-
tions (mostly because these are
already understood by the readers).

www.csdma g.com

However, in practice, it’s generally
poor coding style to instantiate
logic by mapping each register to
various kinds of flip-flops. This

can lead ro longer, more obfuscating
logic that does not take advantage
of the ability to write in VHDL and
Verilog at a higher level (see Code
Listing 1).

Writing specifications
Writing a design specification for
the required logic usually appears
to add too much time to a design
cycle. However, it often turns out
that writing a design specification
actually facilitates getting a part
functioning sooner. Writing the
specification forces the design team
to actually think through items

that are clear at a high level but

not so clear at a detailed level. For
instance, getting the software engi-
neers on a project to agree on what
is going to be in an FPGA’s memory
map can be a real eye-opener. As
the design progresses, it’s also use-
ful to write a description (with tim-

ing diagrams) of how the design
actually works.

After writing (and agreeing on)
a detailed design specification, one
can estimate the size of the PLD
based on the number of flip-flops
likely to be needed. Sometimes, a
spreadsheet is useful for this exer-
cise. Generally, one can rest assured
that the amount of logic required
for a design will increase as the
work progresses.

With the information in hand
about the size of the design, one of
the first choices is deciding whether
to use a complex PLLD (CPLD) or
an FPGA.

CPLDs retain their program
when the power is off because they
are PROM or flash based. Most
modern CPLDs can be purchased
with in-system-programmability
(ISP) capability. In the last few
years, the emergence of ISP in
many PLDs has enabled more par-
allel effort between circuit-board
and logic designs. ISP enables
PLDs to be reprogrammed by sim-

ply connecting a cable between a
PC and a ten-pin joint test action
group (JTAG) header on the circuit
board with the PLD. This allows
programmable test points that can
be especially useful with ball-grid-
array (BGA) packages.

FPPGA basics

FPGAs are generally either fuse
linked or static-RAM (SRAM)-
based. Fuse-linked FPGAs retain
their program when the power is
turned off. However, they are one-
time-programmable (OTP) devices
and can be difficult to replace if
their packages have a considerable
number of pins. Also, fuse-linked
FPGAs can take many minutes to
actually program.

SRAM-based FPGAs lose their
program when the power is removed.
Serial EPROMSs with ISP capability
are now available for programming
many SRAM-based FPGAs. Al-
though a competitor could copy the
data going from the EPROM to the
FPGA, reverse engineering the de-

Code Listing 1: Clear and Obfuscating VHDL Examples of aDivide-by-14 Circuit

70 COMMUNICATION SYSTEMS DESIGN

— Concise VHDL example of a high-speed synchronous divide by 14
— The output should have a 50% duty cycle.
process(nRes,CLk40Mhz) begin

if (nRes = '0') then Cntr <= x"0"; Cntb <= '0'; Divi4 <= L i
elsif rising_edge(CLk40OMHz) then
if (CntD = '0') then Cntr <= Cntr + x"1"; else Cntr <= x"0"; end if;

if Cntr = x"C" then CntD <= '1'; else CntD <= '0'; end if;
if (Cntr >= x"6") then Divi4 <= '1'; else Divi4é <= '0';
end if;
end process;
— Less concise example of the same divider
— Assume that DP_Flipflop and a Counter_4_Bit are predefined components.
— Note that the code takes the same number of lines except that now, the
— reader has to find the Counter_4_Bit and D_Flipflop components to follow
— the code completely. These components must also be maintained.
Counter14: Counter_4_Bit port map(nRst => nRes, Clk => CLk4OMHz,
Rollover => CntD, CountOut <= Cntr); o
Rollover_FF: D_Flipflop port map(nRst => nRes, Clk => ClLk40MHz , ;3
Din => Cnt_At_C, Qout <= CntD); {
Div_FF: D_Flipflop port map(nRst => nRes, ClLk => CLk&4OMHz,
Din => Cnt_GE6, Qout <= Div14);
Cnt_At_C <= '1' when (Cntr = x"C") else '0';
Cnt_GE6 <= '1' when (Cntr >= x"6") else '0';

www.csdmag.com

sign from that data would be incredi-
bly difficult. CPLDs (with the secu-
rity bit set) and fuse-linked FPGAs
are much more difficult to copy. The
major advantage of FPGAs compared
to CPLDs (other than lower current
draw) is higher logic density at a
lower cost.

If a design requires more than
approximately 200 flip-flops, an
FPGA often becomes a better choice
than a CPLD, assuming that very
low propagation delays or being pro-
grammed when power comes up are
not important. For quick develop-
ment cycles, ISP capability for a
PLD (even in the field) is useful.
For this reason, one should have a
special kind of application to decide
to use a fuse-linked FPGA. An
example would be for a satellite
application where a fuse-linked part
may offer substantially better immu-
nity to cosmic radiation.

Generally, one must use
the place-and-route tools provided
by the vendor of the PLD or
FPGA. The place-and-route soft-
ware accepts either a netlist from

the synthesis software or the source
code from an HDL that it synthe-
sizes directly. The outputs of the
place-and-route software include a
programming file for the PLD and
behavioral model for simulation.

Some of the new, larger FPGAs or
PLDs offer some nice extra features.
For instance, some of Altera’s largest
PL.Ds offer the ability to probe some
signals during operation through the
JTAG port, providing something like
a virtual logic analyzer. Altera and
Xilinx are offering digital delay loops
to help synchronize clocks to external
signals.

importance of global
clocks

The importance of global clocks
is a worthwhile discussion topic
during FPGA design. Global
clocks should be considered for
the multiple clock sources needed
in many designs. Several reasons
exist:

e Synchronous logic. Global clocks
allow logic such as synchronous
counters to

function with-

When you choose a thermal interface
look at the whole picture. One product
may solve one problem but cause other
problems like flow-out or grease migration.

We've put Hi-Flow into a pad form
for easier handling and installation.
Flexible Hi-Flow changes from

a solid and flows (phase change
temperature) assuring total wet-out
of the interface.

Hi-Flow™ the Most Complete
Phase Change Material

* No Tabs, No Migration,
High Stability

+ Better Thermal Performance,
05°C-in’/W thermal resistance,
performs as well as grease Call for
samples and more information:
(888) 942-8552.

Cmm

18930 Wat TBth Sereet Minneapolis, MM 55317 = (952) 835-2322 Fax (752) 835-0430 » www.bergquistcompany.com

out glitches.
(Many of the
next states of
the flip-flops of
these synchro-
Nous COunters
depend on most
of the current
states.) With
Altera’s Max+
PlusllI, for
example, syn-
chronous logic

The Original and Most Hi-Flow is Easy to Handle can sometimes
Stable ‘“‘Phase Change” and Easy to Assemble be worked
Thermal Interface in a = Ideal for CPUs around by
Pad Form ;

| declaring a

| small counter

| to be a clique.
Using cliques
can help place
the logic cells
for the counter
close enough
together that
they receive the
clock virtually
simultaneously.

Thermal Products + Memt itch + Ei

* Touch Screens

o Simpler rout-

72 COMMUNICATION SYSTEMS DESIGN

ing. Global
clock lines go to

all logic cells on the FPGA (or
macrocells on a CPLD), so clocks
do not tie up routing resources
that can be used for other signals.

e Short clock-to-output delays. The
shortest clock-to-output delays are
generally obtained with global
clocks.

e No hold time. With global clocks,
usually, no dara hold times are
required. Clocking a flip-flop
with a nonglobal clock using in-
put data from outside the FPGA
probably means that the external
input data must stay valid for sev-
eral nanoseconds after the clock
goes away. This was an issue in
a design with a Motorola 860
microprocessor interfaced with
an FPGA. The particular chip
select line coming from the 860
was de-asserted at approximately
the same time as the address and
data. Bringing the chip select from
the 860 microprocessor to a global
clock input of the FPGA solved
the problem.

Routing clocks

The discussion above should con-
vince most designers, no matter
which part they are using for imple-
mentation, to use global clocks

for flip-flops where practical.
Generally, the best performance
using global clocks can be obtained
by bringing in the global clock

on a dedicated global clock pin.
However, sometimes it’s desirable
to put an internally generated clock
onto a global net. Actually imple-
menting this with the synthesis and
place-and-route software tools can
be tricky.

In one FPGA design, the soft-
ware could not route the internally
generated clock. The reason turned
out to be a bug in the software that
would not route the internally gen-
erated clock onto a global net before
it routed the other nets. Once these
other nets were routed, the software
lacked the routing resources to put
the internally generated clock onto
a glc:bal net. If this situation exists,
and if one can stand the input and
output pad delays, it’s usually safer
to feed the internally generated
clock out of the chip and then back
into a global clock pin.

Engineers should also watch
out for global clocks that can only

www.csdm ag.com

be used for clocking flip-flops. A
global clock may not be used to
gate other signals. Therefore, if a
design requires a signal to be a
global clock and a source for com-
binational logic, the signal should
be brought into two pins on the
FPGA where one of the pins is a
global clock pin. (Note that some
clocks may clock flip-flops on
either their rising or falling edges.
Similarly, a global reset may only
feed the asynchronous, negative

Code Listing 2: VHDL Example of an Altera LCELL and GLOBAL

logic reset input of flip-flops with
these parts.)
Suppose a designer wants
to bring two clocks into an FPGA
and then select one of them inter-
nally to be a global clock for many
flip-flops. It is useful to remember
that this clock selection will bear a
gate or logic-cell delay of several
nanoseconds. For high-speed
designs, this delay may be too
much. An alternative is to use a
high-speed field effect transistor

(FET) subnanosecond switch exter-
nal to the PLD. While the switch
may require several nanoseconds to
select the other clock, the delay
will be minimal once the clock is
selected.

An engineer might also want
to use PLLD outputs to feed high-
speed backplane drivers. A poten-
tial problem is that the clock-to-
output time of the PLLD may be too
long. This problem can sometimes
be solved by using drivers with

— This example shows how to get LlLcells and globals to work with Exemplar

— Leonardo Spectrum and Altera Max+PlusII.
— Llines need to be changed to work with Synplicity.
— the exemplar.lmf file had to be edited in Maxplus2 to show
— ports of an lLcell and a global.
— versions of Maxplus2.) Also note that
— Lcells and globals are referred to by their
— output signal names. In the Maxplus2

— referred to by their Line Labels.

Additional comments show which
Note that for Exemplar,

in1l and y as the

(This may not be necessary with the newest
in the Maxplus2 report file, the
input signal names, not their
individual Llogic options, they are

khkkkhkhkkhhkkkhkkhhkkhhkhkhkhkhkhkhhkhhkhhhkhhhhhhhhkhhhkhhhkhhkhkhkhkhkhhhhkhhhkhkhkhhkhhkkhhkhkhkhkhhkkk

Library ieee; use ijeee.std_Llogic_1164.all;

Library EXAMPLAR; use EXAMPLAR.exemplar_1164.ALL;
use ieee.std_Llogic_unsigned.all;
Library altera; use altera.maxplus2.all;

entity Lcell_tst is port(

CLk_A, CLk_B in std_logic;
select a cloCk
global reset

Clk_Sel: in std_logic;
nRes: in std_Llogic;

input clocks

D_In: in std_Llogic_vector(3 downto 0); data input

D_Out:

end Lcell_tst;

buffer std_logic_vector(3 downto 0);
CLk_Out: buffer std_logic);

Library for Exemplar only
Declare this Library for Synplicity only
Declare this for Synplicity only.

Selected clock output for other circuitry

architecture arch_Llcell_tst of Llcell_tst is

signal Clk, GCLk, Ck: std_logic;
attribute noopt: boolean;
attribute noopt of Llcell:
attribute noopt of global:
component global port(ini:

end component;

component Lcell port(ini:

end component;

component is true;
component is true;
in std_Llogic; y:
Only use this component definition with Exemplar.
in std_logic; y: out std_logic);

Only use this component definition with Exemplar.

for LCELL & GLOBAL instantiations
Only use this with Exemplar.
Only use this with Exemplar.
Only use this with Exemplar.
out std_Llogic);

begin

Clk <= (CLk_A and Clk_Sel)
L_Ck: Lcell port map(ClLk,

(CLk_B and (not Clk_Sel});
Ckl;

L_Clk_oOut: Lcell port map(Clk, ClLk_Out);

L_GCLk: global port map(Ck, GCLk);
process(nRes,GCLk) begin
if (nRes = '0') then D_Out <= x"0";

elsif rising_edge(GCLk) then D_Out <= D_In + x"1"; end if;

end process;
end arch_Lcell_tst;

74 COMMUNICATION SYSTEMS DESIGN

Rt

www.csdmag.com

built-in flip-flops. The clock-to-
output time of the backplane dri-
vers may be considerably faster
than the PLDs.

Instantiating global signals and
other special PLD-brand-specific
features within the synthesis |
software requires different 1m’jc-
mentations for each PLD brand.
It’s useful to make up short test
cases for the desired features to try
to get the synthesis software to
communicate the right information
correctly to the place-and-route
software. This helps to eliminate
extraneous information from the
inevitable troubleshooting to make
things work. A VHDL example
of this exercise, showing how to
work with 1 cells and globals in
Exemplar’s Leonardo Spectrum
and Altera’s Max+Plusll, is shown
in Code Listing 2.

Synthesis and simulation
For larger FPGA designs, the

best VHDL or Verilog synthesis
generally comes with a specialized
synthesis tool rather than the PL.D
manufacturer’s own software. For
CPLDs and some small FPGAs, the
PLD manufacturer’s own software
does an equivalent job of language
synthesis. For these cases, it is bet-
ter to skip the extra synthesis tool to
avoid any problems in interfacing
between the tools.

For simple simulations, one can
make use of the graphical simulators
often built into the PLD vendors’
place-and-route software. However,
the complexity of these simulations
is often limited. Also, one must
check the results of the simulation
graphically.

For more complex designs, it
is more effective to simulate the
design with Verilog or VHDL test
benches. Often, these test benches
are more complicated than the orig-
inal source code. One can also cre-
ate models of peripheral parts to
the FPGA with these test benches
in order to verify that things will
work together correctly. For
instance, it is common to model
SRAMs that are connected to PLDs
with the test bench. An engineer
can design the test benches to auto-
matically check important data con-
ditions and to report any €rrors to a
command window.

e LR S

A designer can choose to simu-
late the design before it is synthe-
sized (functional model) and after it
has been run through the place-and-
route software (behavioral model).
Functional models are easier to cre-
ate since they are simply the original
source code, and they usually run
much faster through test benches
compared to behavioral models.
However, behavioral models can
reveal timing problems that are not

at all obvious with functional models.

There are a number of synthe-
sis and simulation tools available
from vendors such as Exemplar,
Synplify, Model Technology, Aldec,
and Orcad. To operate these tools,
engineers typically must set up a
PLD vendor’s library in the simula-
tor. For instance, for simulating
Altera PL.Ds in ModelSim, the
designer sets up a library with the
following path (assuming the
default installation of Altera’s
Max+Plusll): ¢: /maxplus2/
vhdl87/vital/ v3_D/alt_vtlL.

During an evaluation, it was
determined that ModelSim was
a good simulator =

while it is open in the editor and
ModelSim is using it. Ultraedit was
found to be one editor that did not
cause this problem.

Be careful

Even the most careful simulations
sometimes will not match real-
world conditions, however.

One should try to troubleshoot
designs with a logic analyzer if

at all possible.

With care, one can usually
find an aesthetic, efficient route
through an FPGA design within
a reasonable schedule. It is useful
to remember that one is on a
route, and skipping steps or taking
shortcuts can easily lead one away
from a transparent, functioning
design.

Kurt Aronow is a senior electrical engineer
with Aztek Engineering, Inc. in Boulder,
Colorado. He is a registered PE who
received a BSEE at the University of
Texas and a MEEE at the University

of Golorado. He can be reached at
Furt.aronow@aztek-eng.com.

although its own

scripting lan-
guage is obtuse.
It was useful
to create script
files just to exe-
cute series of
ModelSim com-
mands that were |
also available via
its GUL

When a
command was
invoked from
the GUI, the
corresponding
text for the com- |
mand would
appear on the

So many comm choices...
So little time...
So good to have help.

T1/E1FRACT

T1T3/E3

epmsmux

Let Quadron help you simplify your life and solve your

command win-
dow. The text
could then be
copied to a
script file.

Evaluations
also showed that
ModelSim does
not work well
with some edi-
tors that seize
too much control
of a script file

communication problems with our solutions. We've been
helping people like you worldwide for over a decade.

We offer a large array of communication cards that range
from simple plug-and-play to custom solutions that
precisely match your needs. We'll get you what works the
first time. Check out our web site and call us real soon.

Quadron’

) /a18 www.quadron.com
telephone 805-966-6424 * fax 805-966-7630 ¢ email info(@quadron.com
©2000 Quadron Corporation

CEDTEMBEDR 2000 TE

	NavigatingFpgaDesigns001
	NavigatingFpgaDesigns002
	NavigatingFpgaDesigns003
	NavigatingFpgaDesigns004
	NavigatingFpgaDesigns005
	NavigatingFpgaDesigns006
	NavigatingFpgaDesigns007

